organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3',6'-Bis(ethylamino)-2',7'-dimethyl-2-{[2-[(E)-3,4-methylenedioxybenzylideneamino]ethyl]spiro[isoindoline-1,9'xanthen]-3-one

Zhi-Hong Xu,^a* Hong-Sheng Wang,^a Lian-Ting Tao^a and Hong-Wei Wang^b

^aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and ^bInstitute of Traditional Chinese Materia Medica, Chengde Medical College, Chengde 067000, People's Republic of China

Correspondence e-mail: xuzhihong1980@yahoo.cn

Received 24 June 2009; accepted 3 July 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.069; data-to-parameter ratio = 13.7.

The title compound, C₃₆H₃₆N₄O₄, was prepared as a spirolactam ring formation of the rhodamine dye for comparison with a ring-opened form. The xanthene ring system is approximately planar [r.m.s. deviations from planarity = 0.023 (9) Å for the xanthene ring]. The dihedral angles formed by the spirolactam and 1,3-benzodioxole rings with the xanthene ring system are 86.8 (1) and 74.3 (1) $^{\circ}$, respectively.

Related literature

Rhodamine dyes are one of the most widely used fluorophores for labeling and sensing biomolecules, see: Ko et al. (2006); Wu et al. (2007). For the structures of rhodamine derivatives bearing a lactam unit, see: Kwon et al. (2006); Wu et al. (2007); Zhang et al. (2008); Deng et al. (2009); Tian & Peng (2008).

Experimental

Crystal data

$C_{36}H_{36}N_4O_4$	$\gamma = 92.827 \ (7)^{\circ}$
$M_r = 588.69$	V = 1518.5 (12) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 9.561 (4) Å	Mo $K\alpha$ radiation
b = 12.262 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 13.005 (6) Å	T = 296 K
$\alpha = 93.623 \ (8)^{\circ}$	$0.35 \times 0.32 \times 0.27 \text{ mm}$
$\beta = 92.078 \ (8)^{\circ}$	

Data collection

Bruker SMART CCD area detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.971, T_{\max} = 0.977$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.069$	independent and constrained
S = 1.83	refinement
5606 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
409 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

8102 measured reflections

 $R_{\rm int} = 0.016$

5606 independent reflections

3838 reflections with $I > 2\sigma(I)$

The authors thank the Xuchang University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2829).

References

- Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deng, W.-J., Sun, D., Su, B.-Y., Wang, S.-P. & Zheng, H. (2009). Acta Cryst. E65, 01464
- Ko, S.-K., Yang, Y.-K., Tae, J. & Shin, I. (2006). J. Am. Chem. Soc. 128, 14150-14155
- Kwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, I. (2006). J. Am. Chem. Soc. 127, 10107-10111.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, 01645.
- Wu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538-1540.
- Zhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, 0403.

Acta Cryst. (2009). E65, o1876 [doi:10.1107/S1600536809025872]

3',6'-Bis(ethylamino)-2',7'-dimethyl-2-{[2-[(*E*)-3,4methylenedioxybenzylideneamino]ethyl}spiro[isoindoline-1,9'-xanthen]-3-one

Z.-H. Xu, H.-S. Wang, L.-T. Tao and H.-W. Wang

Comment

Among many fluorescent compounds, rhodamine dyes are known to have excellent photophysical properties, and they are one of the most widely used fluorophores for labeling and sensing biomolecules (Ko *et al.*, 2006; Wu *et al.*, 2007). There are a few single-crystal reports about rhodamine derivatives bearing a lactam moiety (Kwon *et al.*, 2006; Wu *et al.*, 2007; Zhang *et al.*, 2008; Tian *et al.*, 2008; Deng *et al.*, 2009). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties.

In agreement with other reported models, (Wu *et al.*, 2007; Zhang *et al.*, 2008; Tian *et al.*, 2008;) the main skeleton of the molecule is formed by the xanthene ring and the spirolactam-ring. As shown in Figure 1, The atoms of the xanthene ring or the spirolactam-ring are both nearly planar and are almost perpendicular to each other. The dihedral angle between the xanthene mean planes and the spirolactamring fragment is 86.8°. The dihedral angle between the xanthene mean planes and the 1,3-benzodioxole ring is 74.3°.

Experimental

A portion of the *N*-(rhodamine-6 *G*)lactam-ethylenediamine (228 mg, 0.5 mmol) and 3,4-methylenedioxy-benzaldehyde (90 mg, 0.6 mmol) were mixed in fresh distilled acetonitrile (50 ml). The reaction solution was refluxed for 24 h under N₂ atmosphere, the reslulting solution was evaporated to 10 ml and allowed to stand at room temperature overnight. The precipitate which appeared next day was filtered and the crude product was purified by recrystallization from acetonitrile to give 264.6 mg of the title compound in 90% yield. Single crystals suitable for X-ray measurements were obtained from acetonitrile solution by slow evaporation at room temperature.

Refinement

The H atoms attached to C, N and O atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å and O—H = 0.82 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C, N)$ or $1.5U_{eq}(methyl C, O)$.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.

3',6'-Bis(ethylamino)-2',7'-dimethyl-2-{[2-[(*E*)-3,4- methylenedioxybenzylideneamino]ethyl}spiro[isoindoline-1,9'-xanthen]-3-one

Crystal data

$C_{36}H_{36}N_4O_4$	Z = 2
$M_r = 588.69$	$F_{000} = 624$
Triclinic, <i>P</i> 1	$D_{\rm x} = 1.287 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.561 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 12.262 (5) Å	Cell parameters from 2059 reflections
c = 13.005 (6) Å	$\theta = 2.6 - 25.8^{\circ}$
$\alpha = 93.623 \ (8)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 92.078 \ (8)^{\circ}$	T = 296 K
$\gamma = 92.827 \ (7)^{\circ}$	Block, colorless
$V = 1518.5 (12) \text{ Å}^3$	$0.35 \times 0.32 \times 0.27 \text{ mm}$

Data collection

Bruker SMART CCD area detector diffractometer	5606 independent reflections
Radiation source: fine-focus sealed tube	3838 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.016$
T = 296 K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.971, \ T_{\max} = 0.977$	$k = -13 \rightarrow 14$
8102 measured reflections	$l = -13 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.069$	$w = 1/[\sigma^2(F_o^2)]$
<i>S</i> = 1.83	$(\Delta/\sigma)_{\rm max} < 0.001$
5606 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
409 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Ext

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	1.0868 (2)	1.00378 (15)	-0.21394 (16)	0.0673 (7)
H1A	1.0771	1.0680	-0.1692	0.101*
H1B	1.0286	1.0075	-0.2752	0.101*
H1C	1.1828	0.9996	-0.2323	0.101*
C2	1.0422 (2)	0.90267 (15)	-0.15876 (15)	0.0498 (6)
H2A	0.9451	0.9067	-0.1404	0.060*
H2B	1.0499	0.8378	-0.2044	0.060*
C3	1.1025 (2)	0.81736 (15)	0.00388 (15)	0.0366 (5)
C4	1.1834 (2)	0.82230 (15)	0.09733 (15)	0.0384 (5)
C5	1.15344 (19)	0.74560 (14)	0.16730 (14)	0.0384 (5)
Н5	1.2072	0.7484	0.2285	0.046*
C6	1.04600 (19)	0.66337 (14)	0.15110 (14)	0.0317 (5)
C7	0.97058 (19)	0.66070 (14)	0.05864 (14)	0.0333 (5)
C8	0.99800 (19)	0.73535 (14)	-0.01517 (14)	0.0373 (5)
H8	0.9462	0.7303	-0.0774	0.045*
C9	1.2989 (2)	0.91013 (15)	0.11943 (16)	0.0585 (6)
H9A	1.2585	0.9796	0.1321	0.088*
H9B	1.3576	0.9130	0.0612	0.088*
Н9С	1.3540	0.8936	0.1791	0.088*
C10	1.01167 (19)	0.58503 (14)	0.23360 (14)	0.0329 (5)
C11	0.89724 (18)	0.50054 (14)	0.19301 (14)	0.0312 (5)
C12	0.82788 (19)	0.50651 (14)	0.09922 (15)	0.0335 (5)
C13	0.71638 (19)	0.43470 (14)	0.06531 (15)	0.0382 (5)
H13	0.6713	0.4423	0.0018	0.046*
C14	0.6722 (2)	0.35141 (15)	0.12629 (15)	0.0371 (5)
C15	0.7419 (2)	0.34181 (15)	0.22286 (15)	0.0381 (5)
C16	0.85157 (19)	0.41539 (14)	0.25314 (14)	0.0381 (5)
H16	0.8976	0.4083	0.3164	0.046*
C17	0.6979 (2)	0.25228 (15)	0.29171 (16)	0.0565 (6)
H17A	0.7611	0.2543	0.3509	0.085*
H17B	0.6999	0.1824	0.2542	0.085*
H17C	0.6046	0.2633	0.3137	0.085*
C18	0.4790 (2)	0.28637 (16)	-0.00008 (17)	0.0574 (6)
H18A	0.5399	0.2817	-0.0581	0.069*
H18B	0.4365	0.3566	0.0010	0.069*
C19	0.3653 (2)	0.19525 (17)	-0.01317 (19)	0.0815 (8)
H19A	0.4075	0.1257	-0.0159	0.122*
H19B	0.3116	0.2023	-0.0760	0.122*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H19C	0.3049	0.2001	0.0441	0.122*
C20	1.14037 (19)	0.53312 (14)	0.27722 (14)	0.0320 (5)
C21	1.2363 (2)	0.47156 (14)	0.22513 (15)	0.0426 (5)
H21	1.2253	0.4545	0.1545	0.051*
C22	1.3490 (2)	0.43615 (15)	0.28146 (17)	0.0507 (6)
H22	1.4161	0.3964	0.2478	0.061*
C23	1.3639 (2)	0.45904 (16)	0.38774 (17)	0.0503 (6)
H23	1.4399	0.4338	0.4243	0.060*
C24	1.2665 (2)	0.51889 (15)	0.43903 (15)	0.0445 (5)
H24	1.2754	0.5340	0.5100	0.053*
C25	1.15530 (19)	0.55590 (14)	0.38242 (14)	0.0332 (5)
C26	1.0429 (2)	0.62796 (15)	0.41636 (16)	0.0363 (5)
C27	0.86305 (19)	0.72948 (14)	0.32757 (15)	0.0435 (5)
H27A	0.8826	0.7745	0.2706	0.052*
H27B	0.8758	0.7761	0.3906	0.052*
C28	0.7120 (2)	0.68842 (16)	0.31699 (18)	0.0617 (7)
H28A	0.6937	0.6478	0.2510	0.074*
H28B	0.6904	0.6404	0.3714	0.074*
C29	0.5234 (2)	0.77978 (17)	0.38177 (17)	0.0555 (6)
H29	0.5086	0.7161	0.4160	0.067*
C30	0.4246 (2)	0.86726 (16)	0.39934 (16)	0.0446 (5)
C31	0.3017 (2)	0.84294 (16)	0.44650 (16)	0.0523 (6)
H31	0.2865	0.7731	0.4692	0.063*
C32	0.1989 (2)	0.91831 (17)	0.46180 (17)	0.0558 (6)
H32	0.1159	0.9008	0.4936	0.067*
C33	0.2274 (2)	1.01850 (17)	0.42755 (17)	0.0503 (6)
C34	0.3508 (2)	1.04583 (17)	0.38140 (17)	0.0491 (6)
C35	0.4526 (2)	0.97297 (16)	0.36598 (16)	0.0510 (6)
H35	0.5359	0.9920	0.3352	0.061*
C36	0.2187 (2)	1.19285 (17)	0.38506 (19)	0.0656 (7)
H36A	0.2343	1.2557	0.4340	0.079*
H36B	0.1657	1.2152	0.3256	0.079*
N1	0.96564 (15)	0.64561 (11)	0.32967 (11)	0.0345 (4)
N4	0.62548 (19)	0.78474 (14)	0.32444 (15)	0.0602 (5)
N2	1.1293 (2)	0.89507 (15)	-0.06710 (14)	0.0502 (5)
02	0.86117 (13)	0.58540 (10)	0.03119 (9)	0.0419 (4)
N3	0.56092 (19)	0.27858 (15)	0.09466 (16)	0.0523 (5)
O4	1.02493 (14)	0.66716 (10)	0.50372 (10)	0.0505 (4)
05	0.34971 (16)	1.15342 (11)	0.35415 (14)	0.0777 (5)
O6	0.14296 (15)	1.10722 (12)	0.43125 (13)	0.0706 (5)
H3N	0.542 (2)	0.2270 (15)	0.1319 (15)	0.061 (8)*
H2N	1.183 (2)	0.9440 (15)	-0.0491 (15)	0.057 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0826 (19)	0.0578 (15)	0.0642 (17)	-0.0007 (13)	-0.0017 (14)	0.0310 (13)
C2	0.0529 (15)	0.0500 (13)	0.0481 (14)	0.0009 (11)	-0.0011 (12)	0.0188 (12)

C3	0.0382 (12)	0.0331 (11)	0.0402 (13)	0.0051 (10)	0.0070 (10)	0.0088 (10)
C4	0.0409 (13)	0.0360 (12)	0.0385 (13)	-0.0013 (10)	0.0005 (10)	0.0051 (10)
C5	0.0401 (13)	0.0424 (12)	0.0325 (12)	0.0044 (10)	-0.0059 (10)	0.0037 (10)
C6	0.0332 (11)	0.0316 (11)	0.0309 (12)	0.0044 (9)	0.0010 (9)	0.0049 (9)
C7	0.0339 (12)	0.0315 (11)	0.0350 (12)	0.0006 (10)	0.0021 (10)	0.0059 (10)
C8	0.0384 (12)	0.0409 (12)	0.0331 (12)	0.0024 (10)	-0.0029 (9)	0.0082 (10)
C9	0.0613 (16)	0.0547 (14)	0.0579 (15)	-0.0132 (12)	-0.0068 (12)	0.0092 (12)
C10	0.0357 (12)	0.0355 (11)	0.0283 (11)	0.0048 (10)	0.0024 (9)	0.0050 (9)
C11	0.0341 (12)	0.0310 (11)	0.0292 (11)	0.0049 (9)	0.0038 (9)	0.0037 (9)
C12	0.0328 (12)	0.0328 (11)	0.0359 (12)	0.0016 (9)	0.0051 (10)	0.0081 (10)
C13	0.0371 (12)	0.0413 (12)	0.0364 (12)	0.0001 (10)	-0.0019 (10)	0.0072 (10)
C14	0.0320 (12)	0.0347 (12)	0.0451 (13)	0.0025 (10)	0.0063 (10)	0.0022 (11)
C15	0.0386 (12)	0.0358 (12)	0.0416 (13)	0.0032 (10)	0.0099 (10)	0.0087 (11)
C16	0.0428 (13)	0.0399 (12)	0.0332 (12)	0.0069 (10)	0.0030 (10)	0.0094 (10)
C17	0.0577 (15)	0.0544 (14)	0.0592 (16)	-0.0044 (12)	0.0067 (12)	0.0218 (13)
C18	0.0439 (14)	0.0501 (14)	0.0772 (18)	-0.0020 (12)	-0.0104 (13)	0.0071 (13)
C19	0.0530 (16)	0.0713 (17)	0.116 (2)	-0.0197 (14)	-0.0203 (15)	0.0078 (16)
C20	0.0331 (11)	0.0314 (11)	0.0320 (12)	0.0027 (9)	0.0007 (9)	0.0059 (9)
C21	0.0434 (13)	0.0459 (13)	0.0393 (13)	0.0090 (11)	0.0005 (11)	0.0042 (11)
C22	0.0435 (14)	0.0530 (14)	0.0571 (16)	0.0172 (11)	0.0045 (12)	0.0016 (12)
C23	0.0416 (13)	0.0510 (14)	0.0588 (16)	0.0122 (11)	-0.0117 (12)	0.0073 (12)
C24	0.0492 (14)	0.0470 (13)	0.0370 (13)	0.0040 (11)	-0.0079 (11)	0.0058 (11)
C25	0.0361 (12)	0.0316 (11)	0.0321 (12)	0.0000 (9)	-0.0002 (10)	0.0066 (9)
C26	0.0401 (13)	0.0342 (12)	0.0346 (13)	-0.0024 (10)	0.0028 (10)	0.0058 (10)
C27	0.0482 (14)	0.0399 (12)	0.0443 (13)	0.0117 (11)	0.0080 (11)	0.0056 (10)
C28	0.0477 (15)	0.0549 (15)	0.0834 (19)	0.0167 (12)	0.0039 (13)	-0.0004 (13)
C29	0.0504 (15)	0.0536 (14)	0.0631 (17)	0.0079 (12)	-0.0034 (13)	0.0074 (13)
C30	0.0440 (14)	0.0455 (13)	0.0439 (14)	0.0069 (11)	-0.0032 (11)	-0.0007 (11)
C31	0.0527 (15)	0.0509 (14)	0.0539 (15)	0.0005 (12)	0.0080 (12)	0.0064 (12)
C32	0.0485 (15)	0.0524 (15)	0.0676 (17)	0.0009 (12)	0.0174 (13)	0.0056 (13)
C33	0.0404 (14)	0.0482 (14)	0.0617 (16)	0.0082 (12)	0.0063 (12)	-0.0073 (12)
C34	0.0462 (15)	0.0432 (14)	0.0579 (16)	0.0008 (12)	0.0061 (12)	0.0008 (12)
C35	0.0411 (14)	0.0562 (15)	0.0562 (15)	0.0040 (12)	0.0075 (11)	0.0027 (12)
C36	0.0593 (17)	0.0528 (15)	0.087 (2)	0.0119 (13)	0.0100 (14)	0.0092 (14)
N1	0.0379 (10)	0.0356 (9)	0.0309 (10)	0.0095 (8)	0.0021 (8)	0.0032 (8)
N4	0.0460 (12)	0.0657 (13)	0.0716 (15)	0.0197 (10)	0.0092 (11)	0.0086 (11)
N2	0.0550 (13)	0.0457 (13)	0.0504 (13)	-0.0078 (11)	-0.0064 (10)	0.0197 (11)
O2	0.0443 (9)	0.0436 (8)	0.0374 (8)	-0.0103 (7)	-0.0093 (7)	0.0154 (7)
N3	0.0471 (12)	0.0488 (13)	0.0613 (14)	-0.0095 (10)	0.0016 (10)	0.0159 (12)
O4	0.0631 (10)	0.0582 (9)	0.0303 (8)	0.0083 (8)	0.0046 (7)	-0.0029 (7)
O5	0.0602 (11)	0.0485 (10)	0.1288 (16)	0.0102 (9)	0.0299 (11)	0.0207 (10)
O6	0.0518 (10)	0.0517 (10)	0.1091 (15)	0.0076 (8)	0.0208 (10)	-0.0020 (10)

Geometric parameters (Å, °)

C1—C2	1.522 (2)	C19—H19A	0.9600
C1—H1A	0.9600	C19—H19B	0.9600
C1—H1B	0.9600	С19—Н19С	0.9600
C1—H1C	0.9600	C20—C25	1.380 (2)

C2—N2	1.440 (2)	C20—C21	1.385 (2)
C2—H2A	0.9700	C21—C22	1.384 (3)
C2—H2B	0.9700	C21—H21	0.9300
C3—C8	1.386 (2)	C22—C23	1.394 (3)
C3—N2	1.389 (2)	С22—Н22	0.9300
C3—C4	1.413 (3)	C23—C24	1.379 (3)
C4—C5	1.377 (2)	С23—Н23	0.9300
C4—C9	1.511 (2)	C24—C25	1.382 (2)
C5—C6	1.404 (2)	C24—H24	0.9300
С5—Н5	0.9300	C25—C26	1.486 (2)
C6—C7	1.377 (2)	C26—O4	1.227 (2)
C6—C10	1.519 (2)	C26—N1	1.360 (2)
C7—O2	1.3821 (19)	C27—N1	1.456 (2)
С7—С8	1.391 (2)	C27—C28	1.504 (2)
С8—Н8	0.9300	C27—H27A	0.9700
С9—Н9А	0.9600	С27—Н27В	0.9700
С9—Н9В	0.9600	C28—N4	1.475 (2)
С9—Н9С	0.9600	C28—H28A	0.9700
C10—N1	1.504 (2)	C28—H28B	0.9700
C10—C20	1.521 (2)	C29—N4	1.251 (2)
C10—C11	1.525 (2)	C29—C30	1.476 (3)
C11—C12	1.375 (2)	С29—Н29	0.9300
C11—C16	1.405 (2)	C30—C31	1.373 (2)
C12—O2	1.3850 (19)	C30—C35	1.409 (2)
C12—C13	1.389 (2)	C31—C32	1.393 (3)
C13—C14	1.391 (2)	C31—H31	0.9300
C13—H13	0.9300	C32—C33	1.351 (2)
C14—N3	1.388 (2)	С32—Н32	0.9300
C14—C15	1.415 (3)	C33—C34	1.380 (2)
C15—C16	1.378 (2)	C33—O6	1.386 (2)
C15—C17	1.513 (2)	C34—C35	1.365 (3)
C16—H16	0.9300	C34—O5	1.388 (2)
C17—H17A	0.9600	С35—Н35	0.9300
С17—Н17В	0.9600	C36—O6	1.423 (2)
С17—Н17С	0.9600	C36—O5	1.427 (2)
C18—N3	1.447 (3)	С36—Н36А	0.9700
C18—C19	1.517 (2)	С36—Н36В	0.9700
C18—H18A	0.9700	N2—H2N	0.790 (17)
C18—H18B	0.9700	N3—H3N	0.836 (17)
C2—C1—H1A	109.5	H19A—C19—H19C	109.5
C2—C1—H1B	109.5	H19B—C19—H19C	109.5
H1A—C1—H1B	109.5	C25—C20—C21	120.81 (18)
C2—C1—H1C	109.5	C25—C20—C10	110.72 (16)
H1A—C1—H1C	109.5	C21—C20—C10	128.47 (18)
H1B—C1—H1C	109.5	C22—C21—C20	117.94 (19)
N2—C2—C1	110.27 (17)	C22—C21—H21	121.0
N2—C2—H2A	109.6	C20—C21—H21	121.0
C1—C2—H2A	109.6	C21—C22—C23	121.21 (19)
N2—C2—H2B	109.6	C21—C22—H22	119.4

C1—C2—H2B	109.6	C23—C22—H22	119.4
H2A—C2—H2B	108.1	C24—C23—C22	120.3 (2)
C8—C3—N2	121.31 (19)	C24—C23—H23	119.8
C8—C3—C4	119.48 (17)	С22—С23—Н23	119.8
N2—C3—C4	119.21 (18)	C23—C24—C25	118.43 (19)
C5—C4—C3	118.24 (18)	C23—C24—H24	120.8
C5—C4—C9	121.26 (18)	С25—С24—Н24	120.8
C3—C4—C9	120.50 (17)	C20—C25—C24	121.28 (18)
C4—C5—C6	123.46 (18)	C20—C25—C26	109.15 (17)
С4—С5—Н5	118.3	C24—C25—C26	129.45 (19)
С6—С5—Н5	118.3	O4—C26—N1	126.31 (19)
C7—C6—C5	116.48 (16)	O4—C26—C25	127.68 (19)
C7—C6—C10	122.18 (17)	N1-C26-C25	105.97 (17)
C5—C6—C10	121.29 (17)	N1—C27—C28	115.78 (15)
C6—C7—O2	123.60 (16)	N1—C27—H27A	108.3
C6—C7—C8	122.26 (18)	С28—С27—Н27А	108.3
O2—C7—C8	114.13 (17)	N1—C27—H27B	108.3
C3—C8—C7	120.05 (18)	С28—С27—Н27В	108.3
С3—С8—Н8	120.0	Н27А—С27—Н27В	107.4
С7—С8—Н8	120.0	N4—C28—C27	107.44 (16)
С4—С9—Н9А	109.5	N4—C28—H28A	110.2
С4—С9—Н9В	109.5	C27—C28—H28A	110.2
Н9А—С9—Н9В	109.5	N4—C28—H28B	110.2
С4—С9—Н9С	109.5	C27—C28—H28B	110.2
Н9А—С9—Н9С	109.5	H28A—C28—H28B	108.5
Н9В—С9—Н9С	109.5	N4—C29—C30	125.0 (2)
N1-C10-C6	111.05 (14)	N4—C29—H29	117.5
N1—C10—C20	99.76 (14)	С30—С29—Н29	117.5
C6—C10—C20	112.95 (15)	C31—C30—C35	120.1 (2)
N1-C10-C11	109.94 (14)	C31—C30—C29	118.63 (19)
C6—C10—C11	110.04 (15)	C35—C30—C29	121.19 (19)
C20—C10—C11	112.71 (14)	C30—C31—C32	122.9 (2)
C12-C11-C16	116.36 (17)	C30-C31-H31	118.6
C12—C11—C10	122.45 (16)	С32—С31—Н31	118.6
C16-C11-C10	121.10 (17)	C33—C32—C31	115.79 (19)
C11—C12—O2	123.13 (17)	С33—С32—Н32	122.1
C11—C12—C13	122.70 (17)	С31—С32—Н32	122.1
O2—C12—C13	114.16 (17)	C32—C33—C34	122.6 (2)
C12—C13—C14	120.03 (19)	C32—C33—O6	127.6 (2)
C12—C13—H13	120.0	C34—C33—O6	109.75 (19)
C14—C13—H13	120.0	C35—C34—C33	122.3 (2)
N3—C14—C13	121.38 (19)	C35—C34—O5	128.24 (19)
N3—C14—C15	119.65 (18)	C33—C34—O5	109.46 (19)
C13—C14—C15	118.97 (18)	C34—C35—C30	116.26 (19)
C16—C15—C14	118.74 (17)	C34—C35—H35	121.9
C16—C15—C17	120.40 (19)	С30—С35—Н35	121.9
C14—C15—C17	120.86 (18)	O6—C36—O5	108.36 (16)
C15—C16—C11	123.19 (18)	O6—C36—H36A	110.0
C15-C16-H16	118.4	O5—C36—H36A	110.0

C11 C16 U16	110 /	O6 C26 U26D	110.0
C15-C17-H17A	109.5	05-C36-H36B	110.0
C15-C17-H17B	109.5	H36A_C36_H36B	108.4
H17A_C17_H17B	109.5	C26-N1-C27	122 31 (16)
C15-C17-H17C	109.5	$C_{26} = N_1 - C_{10}$	114 23 (15)
H17A - C17 - H17C	109.5	$C_{27} = N_1 = C_{10}$	12272(15)
H17B-C17-H17C	109.5	$C_{29} - N_{4} - C_{28}$	116.83(19)
N3C18C19	110 73 (17)	C_{2} N2 C_{2}	122 46 (19)
N3-C18-H18A	109.5	$C_{3} = N_{2} = C_{2}$	122.40(1)
C19— $C18$ — $H18A$	109.5	$C_2 = N_2 = H_2 N_2$	110.0(15) 119.4(15)
N3_C18_H18B	109.5	$C_{2} = C_{2} = C_{12}$	119.4(13) 118.22(14)
C19-C18-H18B	109.5	$C_{14} = N_{3} = C_{18}$	123 18 (18)
H18A_C18_H18B	109.5	C14 N3 $H3N$	123.10(10) 117.7(15)
C_{18} C_{19} H_{19A}	109.5	C18 N3 H3N	117.7(15)
C18-C19-H19B	109.5	$C_{10} = 105 = 10510$	106.19(15)
H19A - C19 - H19B	109.5	$C_{33} = 06 = C_{36}$	106.24 (16)
C18—C19—H19C	109.5	00 000	100.24 (10)
C8—C3—C4—C5	-1.0(3)	C10-C20-C25-C24	-178.84(15)
N2-C3-C4-C5	178.93 (17)	C21—C20—C25—C26	176.84 (15)
C8-C3-C4-C9	179.32 (17)	C10-C20-C25-C26	-2.4(2)
N2-C3-C4-C9	-0.7(3)	C_{23} C_{24} C_{25} C_{20}	0.6 (3)
C3—C4—C5—C6	-0.6(3)	C23—C24—C25—C26	-174.98(17)
C9—C4—C5—C6	179.08 (17)	C20—C25—C26—O4	-178.01 (18)
C4—C5—C6—C7	1.2 (3)	C24—C25—C26—O4	-2.0(3)
C4—C5—C6—C10	-176.25 (17)	C20—C25—C26—N1	-0.2(2)
$C_{5} - C_{6} - C_{7} - O_{2}^{2}$	-179.61(15)	$C_{24} = C_{25} = C_{26} = N_1$	175 78 (18)
C10—C6—C7—O2	-2.2 (3)	N1-C27-C28-N4	175.74 (17)
C5-C6-C7-C8	-0.3(3)	N4—C29—C30—C31	166.7 (2)
C10—C6—C7—C8	177.18 (16)	N4—C29—C30—C35	-11.4 (4)
N2-C3-C8-C7	-178.01(17)	C_{35} — C_{30} — C_{31} — C_{32}	1.4 (3)
C4—C3—C8—C7	1.9 (3)	C_{29} C_{30} C_{31} C_{32}	-176.7(2)
C6—C7—C8—C3	-1.3(3)	C_{30} $-C_{31}$ $-C_{32}$ $-C_{33}$	-0.3 (3)
02-C7-C8-C3	178.12 (15)	C31—C32—C33—C34	-0.8(3)
C7 - C6 - C10 - N1	-115 91 (19)	$C_{31} - C_{32} - C_{33} - O_{6}$	178 7 (2)
$C_{5} - C_{6} - C_{10} - N_{1}$	61 4 (2)	C_{32} C_{33} C_{34} C_{35}	0.8(4)
C7—C6—C10—C20	132.98 (18)	06—C33—C34—C35	-178.8(2)
$C_{5} - C_{6} - C_{10} - C_{20}$	-49.7 (2)	C_{32} C_{33} C_{34} C_{5}	179 7 (2)
C7 - C6 - C10 - C11	61(2)	06-C33-C34-05	01(3)
C_{5} C_{6} C_{10} C_{11}	-176.62(16)	$C_{33} - C_{34} - C_{35} - C_{30}$	0.4(3)
N1 - C10 - C11 - C12	115 71 (19)	05-034-035-030	-1784(2)
C6-C10-C11-C12	-69(2)	$C_{31} - C_{30} - C_{35} - C_{34}$	-14(3)
C_{20} C_{10} C_{11} C_{12}	-133.97(18)	C_{29} C_{30} C_{35} C_{34}	176 7 (2)
N1-C10-C11-C16	-60.5(2)	04-C26-N1-C27	104(3)
C6-C10-C11-C16	176 87 (15)	$C_{25} - C_{26} - N_{1} - C_{27}$	-16746(14)
C_{20} C_{10} C_{11} C_{16}	49 8 (2)	04-C26-N1-C10	-179.26(17)
C16-C11-C12-O2	-179.68 (15)	C_{25} C_{26} N_{1} C_{10}	2.92 (19)
C10-C11-C12-O2	3.9 (3)	C_{28} C_{27} N_{1} C_{26}	-1102(2)
C16-C11-C12-C13	15(3)	C_{28} C_{27} N_{1} C_{10}	80 2 (2)
C10-C11-C12-C13	-174 94 (16)	C6-C10-N1-C26	-12348(17)

C11—C12—C13—C14	-1.1 (3)	C20-C10-N1-C26	-4.13 (18)
O2-C12-C13-C14	179.95 (15)	C11-C10-N1-C26	114.50 (17)
C12-C13-C14-N3	179.83 (17)	C6-C10-N1-C27	46.8 (2)
C12—C13—C14—C15	0.4 (3)	C20-C10-N1-C27	166.20 (14)
N3-C14-C15-C16	-179.57 (17)	C11—C10—N1—C27	-75.17 (19)
C13—C14—C15—C16	-0.1 (3)	C30-C29-N4-C28	-179.9 (2)
N3-C14-C15-C17	0.7 (3)	C27—C28—N4—C29	-133.9 (2)
C13-C14-C15-C17	-179.81 (16)	C8—C3—N2—C2	6.7 (3)
C14-C15-C16-C11	0.5 (3)	C4—C3—N2—C2	-173.21 (19)
C17—C15—C16—C11	-179.76 (16)	C1—C2—N2—C3	172.91 (18)
C12-C11-C16-C15	-1.2 (3)	C6—C7—O2—C12	-1.7 (2)
C10-C11-C16-C15	175.26 (17)	C8—C7—O2—C12	178.86 (15)
N1-C10-C20-C25	3.82 (18)	C11—C12—O2—C7	0.9 (2)
C6—C10—C20—C25	121.76 (17)	C13—C12—O2—C7	179.80 (15)
C11—C10—C20—C25	-112.75 (17)	C13-C14-N3-C18	-3.1 (3)
N1-C10-C20-C21	-175.41 (17)	C15-C14-N3-C18	176.40 (19)
C6-C10-C20-C21	-57.5 (2)	C19-C18-N3-C14	179.95 (18)
C11-C10-C20-C21	68.0 (2)	C35—C34—O5—C36	178.7 (2)
C25—C20—C21—C22	-1.6 (3)	C33—C34—O5—C36	-0.2 (3)
C10-C20-C21-C22	177.57 (17)	O6—C36—O5—C34	0.2 (3)
C20—C21—C22—C23	1.7 (3)	C32—C33—O6—C36	-179.5 (2)
C21—C22—C23—C24	-0.7 (3)	C34—C33—O6—C36	0.0 (3)
C22—C23—C24—C25	-0.5 (3)	O5—C36—O6—C33	-0.2 (2)
C21—C20—C25—C24	0.5 (3)		

